Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
1.
J Neuroinflammation ; 21(1): 72, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521959

RESUMO

BACKGROUND: Blood-brain barrier (BBB) dysfunction and immune cell migration into the central nervous system (CNS) are pathogenic drivers of multiple sclerosis (MS). Ways to reinstate BBB function and subsequently limit neuroinflammation present promising strategies to restrict disease progression. However, to date, the molecular players directing BBB impairment in MS remain poorly understood. One suggested candidate to impact BBB function is the transient receptor potential vanilloid-type 4 ion channel (TRPV4), but its specific role in MS pathogenesis remains unclear. Here, we investigated the role of TRPV4 in BBB dysfunction in MS. MAIN TEXT: In human post-mortem MS brain tissue, we observed a region-specific increase in endothelial TRPV4 expression around mixed active/inactive lesions, which coincided with perivascular microglia enrichment in the same area. Using in vitro models, we identified that microglia-derived tumor necrosis factor-α (TNFα) induced brain endothelial TRPV4 expression. Also, we found that TRPV4 levels influenced brain endothelial barrier formation via expression of the brain endothelial tight junction molecule claudin-5. In contrast, during an inflammatory insult, TRPV4 promoted a pathological endothelial molecular signature, as evidenced by enhanced expression of inflammatory mediators and cell adhesion molecules. Moreover, TRPV4 activity mediated T cell extravasation across the brain endothelium. CONCLUSION: Collectively, our findings suggest a novel role for endothelial TRPV4 in MS, in which enhanced expression contributes to MS pathogenesis by driving BBB dysfunction and immune cell migration.


Assuntos
Barreira Hematoencefálica , Esclerose Múltipla , Canais de Cátion TRPV , Humanos , Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central/metabolismo , Inflamação/metabolismo , Esclerose Múltipla/patologia , Canais de Cátion TRPV/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38375572

RESUMO

Lung surfactant collectins, surfactant protein A (SP-A) and D (SP-D), are oligomeric C-type lectins involved in lung immunity. Through their carbohydrate recognition domain, they recognize carbohydrates at pathogen surfaces and initiate lung innate immune response. Here, we propose that they may also be able to bind to other carbohydrates present in typical cell surfaces, such as the alveolar epithelial glycocalyx. To test this hypothesis, we analyzed and quantified the binding affinity of SP-A and SP-D to different sugars and glycosaminoglycans (GAGs) by microscale thermophoresis (MST). In addition, by changing the calcium concentration, we aimed to characterize any consequences on the binding behavior. Our results show that both oligomeric proteins bind with high affinity (in nanomolar range) to GAGs, such as hyaluronan (HA), heparan sulfate (HS) and chondroitin sulfate (CS). Binding to HS and CS was calcium-independent, as it was not affected by changing calcium concentration in the buffer. Quantification of GAGs in bronchoalveolar lavage (BAL) fluid from animals deficient in either SP-A or SP-D, showed changes in GAG composition, and electron micrographs showed differences in alveolar glycocalyx ultrastructure in vivo. Taken together, SP-A and SP-D bind to model sulfated glycosaminoglycans of the alveolar epithelial glycocalyx in a multivalent and calcium independent way. These findings provide a potential mechanism for SP-A and SP-D as an integral part of the alveolar epithelial glycocalyx binding and interconnecting free GAGs, proteoglycans and other glycans in glycoproteins, which may influence its glycocalyx composition and structure.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38207121

RESUMO

In vitro lung research requires appropriate cell culture models that adequately mimic in vivo structure and function. Previously, researchers have extensively utilized commercially available and easily expandable A549 and NCI-H441 cells which replicate some yet not all features of alveolar epithelial cells. Specifically, these cells are often restricted by terminally altered expression while lacking important alveolar epithelial characteristics. Of late, human primary alveolar epithelial cells (hPAEpC) have become commercially available, but are so far poorly specified. Here, we applied a comprehensive set of technologies to characterize their morphology, surface marker expression, transcriptomic profile, and functional properties. At optimized seeding numbers of 7,500 cells per cm2 and growth at a gas-liquid interface, hPAEpC formed regular monolayers with tight junctions and amiloride-sensitive transepithelial ion transport. Electron microscopy revealed lamellar body and microvilli formation characteristic for alveolar type II cells. Protein and single cell transcriptomic analyses revealed expression of alveolar type I and type II cell markers, yet transcriptomic data failed to detect NKX2-1, an important transcriptional regulator of alveolar cell differentiation. With increasing passage number, hPAEpC transdifferentiated towards alveolar-basal intermediates characterized as SFTPC-, KRT8high and KRT5- cells. In spite of marked changes in transcriptome as a function of passaging, UMAP plots did not reveal major shifts in cell clusters and epithelial permeability was unaffected. The present work delineates optimized culture conditions, cellular characteristics and functional properties of commercially available hPAEpC. hPAEpC may provide a useful model system for studies on drug delivery, barrier function, and transepithelial ion transport in vitro.

4.
Am J Physiol Heart Circ Physiol ; 326(2): H433-H440, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099848

RESUMO

Pulmonary and systemic congestion as a consequence of heart failure are clinically recognized as alarm signals for clinical outcome and mortality. Although signs and symptoms of congestion are well detectable in patients, monitoring of congestion in small animals with heart failure lacks adequate noninvasive methodology yet. Here, we developed a novel ultrasonography-based scoring system to assess pulmonary and systemic congestion in experimental heart failure, by using lung ultrasound (LUS) and imaging of the inferior vena cava (Cava), termed CavaLUS. CavaLUS was established and tested in a rat model of supracoronary aortic banding and a mouse model of myocardial infarction, providing high sensitivity and specificity while correlating to numerous parameters of cardiac performance and disease severity. CavaLUS, therefore, provides a novel comprehensive tool for experimental heart failure in small animals to noninvasively assess congestion.NEW & NOTEWORTHY As thorough, noninvasive assessment of congestion is not available in small animals, we developed and validated an ultrasonography-based research tool to evaluate pulmonary and central venous congestion in experimental heart failure models.


Assuntos
Insuficiência Cardíaca , Hiperemia , Humanos , Camundongos , Animais , Ratos , Hiperemia/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Ultrassonografia/métodos , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/etiologia , Veia Cava Inferior/diagnóstico por imagem
5.
Sci Rep ; 13(1): 22656, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114509

RESUMO

Heart failure (HF) presents manifestations in both cardiac and vascular abnormalities. Pulmonary hypertension (PH) is prevalent in up 50% of HF patients. While pulmonary arterial hypertension (PAH) is closely associated with pulmonary artery (PA) stiffness, the association of HF caused, post-capillary PH and PA stiffness is unknown. We aimed to assess and compare PA stiffness and blood flow hemodynamics noninvasively across HF entities and control subjects without HF using CMR. We analyzed data of a prospectively conducted study with 74 adults, including 55 patients with HF across the spectrum (20 HF with preserved ejection fraction [HFpEF], 18 HF with mildly-reduced ejection fraction [HFmrEF] and 17 HF with reduced ejection fraction [HFrEF]) as well as 19 control subjects without HF. PA stiffness was defined as reduced vascular compliance, indicated primarily by the relative area change (RAC), altered flow hemodynamics were detected by increased flow velocities, mainly by pulse wave velocity (PWV). Correlations between the variables were explored using correlation and linear regression analysis. PA stiffness was significantly increased in HF patients compared to controls (RAC 30.92 ± 8.47 vs. 50.08 ± 9.08%, p < 0.001). PA blood flow parameters were significantly altered in HF patients (PWV 3.03 ± 0.53 vs. 2.11 ± 0.48, p < 0.001). These results were consistent in all three HF groups (HFrEF, HFmrEF and HFpEF) compared to the control group. Furthermore, PA stiffness was associated with higher NT-proBNP levels and a reduced functional status. PA stiffness can be assessed non-invasively by CMR. PA stiffness is increased in HFrEF, HFmrEF and HFpEF patients when compared to control subjects.Trial registration The study was registered at the German Clinical Trials Register (DRKS, registration number: DRKS00015615).


Assuntos
Insuficiência Cardíaca , Adulto , Humanos , Artéria Pulmonar/diagnóstico por imagem , Análise de Onda de Pulso , Volume Sistólico/fisiologia , Espectroscopia de Ressonância Magnética , Prognóstico
7.
Pneumologie ; 77(11): 862-870, 2023 Nov.
Artigo em Alemão | MEDLINE | ID: mdl-37963476

RESUMO

The recently published new European guidelines for diagnosis and treatment of pulmonary hypertension now offer the so far most extensive description of genetic testing and counselling for pulmonary arterial hypertension patients. In addition, the importance of a clinical screening of healthy mutation carriers is highlighted as well as the genetic testing of patients with a suspicion of pulmonary veno-occlusive disease. We frame the respective parts of the guidelines on genetic testing and counselling in the context of recent data and provide comments. Finally, we give an outlook on novel molecular approaches starting from Sotatercept, addressing ion channels and novel therapeutic developments.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Pneumopatia Veno-Oclusiva , Humanos , Hipertensão Pulmonar Primária Familiar/diagnóstico , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar Primária Familiar/terapia , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/terapia , Pneumopatia Veno-Oclusiva/diagnóstico , Pneumopatia Veno-Oclusiva/genética , Pneumopatia Veno-Oclusiva/terapia
8.
Pneumologie ; 77(11): 926-936, 2023 Nov.
Artigo em Alemão | MEDLINE | ID: mdl-37963482

RESUMO

Pulmonary hypertension associated with left heart disease (PH-LHD) corresponds to group two of pulmonary hypertension according to clinical classification. Haemodynamically, this group includes isolated post-capillary pulmonary hypertension (IpcPH) and combined post- and pre-capillary pulmonary hypertension (CpcPH). PH-LHD is defined by an mPAP > 20 mmHg and a PAWP > 15 mmHg, pulmonary vascular resistance (PVR) with a cut-off value of 2 Wood Units (WU) is used to differentiate between IpcPH and CpcPH. A PVR greater than 5 WU indicates a dominant precapillary component. PH-LHD is the most common form of pulmonary hypertension, the leading cause being left heart failure with preserved (HFpEF) or reduced ejection fraction (HFmrEF, HFrEF), valvular heart disease and, less commonly, congenital heart disease. The presence of pulmonary hypertension is associated with increased symptom burden and poorer outcome across the spectrum of left heart disease. Differentiating between group 1 pulmonary hypertension with cardiac comorbidities and PH-LHD, especially due to HFpEF, is a particular challenge. Therapeutically, no general recommendation for the use of PDE5 inhibitors in HFpEF-associated CpcPH can be made at this time. There is currently no reliable rationale for the use of PAH drugs in IpcPH, nor is therapy with endothelin receptor antagonists or prostacyclin analogues recommended for all forms of PH-LHD.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/etiologia , Insuficiência Cardíaca/complicações , Volume Sistólico , Cardiopatias/complicações , Resistência Vascular
10.
Physiol Genomics ; 55(12): 634-646, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37811720

RESUMO

Congenital heart disease (CHD) is one of the most prevalent neonatal congenital anomalies. To catalog the putative candidate CHD risk genes, we collected 16,349 variants [single-nucleotide variants (SNVs) and Indels] impacting 8,308 genes in 3,166 CHD cases for a comprehensive meta-analysis. Using American College of Medical Genetics (ACMG) guidelines, we excluded the 0.1% of benign/likely benign variants and the resulting dataset consisted of 83% predicted loss of function variants and 17% missense variants. Seventeen percent were de novo variants. A stepwise analysis identified 90 variant-enriched CHD genes, of which six (GPATCH1, NYNRIN, TCLD2, CEP95, MAP3K19, and TTC36) were novel candidate CHD genes. Single-cell transcriptome cluster reconstruction analysis on six CHD tissues and four controls revealed upregulation of the top 10 frequently mutated genes primarily in cardiomyocytes. NOTCH1 (highest number of variants) and MYH6 (highest number of recurrent variants) expression was elevated in endocardial cells and cardiomyocytes, respectively, and 60% of these gene variants were associated with tetralogy of Fallot and coarctation of the aorta, respectively. Pseudobulk analysis using the single-cell transcriptome revealed significant (P < 0.05) upregulation of both NOTCH1 (endocardial cells) and MYH6 (cardiomyocytes) in the control heart data. We observed nine different subpopulations of CHD heart cardiomyocytes of which only four were observed in the control heart. This is the first comprehensive meta-analysis combining genomics and CHD single-cell transcriptomics, identifying the most frequently mutated CHD genes, and demonstrating CHD gene heterogeneity, suggesting that multiple genes contribute to the phenotypic heterogeneity of CHD. Cardiomyocytes and endocardial cells are identified as major CHD-related cell types.NEW & NOTEWORTHY Congential heart disease (CHD) is one of the most prevalent neonatal congenital anomalies. We present a comprehensive analysis combining genomics and CHD single-cell transcriptome. Our study identifies 90 potential candidate CHD risk genes of which 6 are novel. The risk genes have heterogenous expression suggestive of multiple genes contributing to the phenotypic heterogeneity of CHD. Cardiomyocytes and endocardial cells are identified as major CHD-related cell types.


Assuntos
Coartação Aórtica , Cardiopatias Congênitas , Recém-Nascido , Humanos , Miócitos Cardíacos , Células Endoteliais , Cardiopatias Congênitas/genética , Mutação/genética , MAP Quinase Quinase Quinases/genética
12.
Nat Commun ; 14(1): 4416, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479718

RESUMO

Pulmonary hypertension worsens outcome in left heart disease. Stiffening of the pulmonary artery may drive this pathology by increasing right ventricular dysfunction and lung vascular remodeling. Here we show increased stiffness of pulmonary arteries from patients with left heart disease that correlates with impaired pulmonary hemodynamics. Extracellular matrix remodeling in the pulmonary arterial wall, manifested by dysregulated genes implicated in elastin degradation, precedes the onset of pulmonary hypertension. The resulting degradation of elastic fibers is paralleled by an accumulation of fibrillar collagens. Pentagalloyl glucose preserves arterial elastic fibers from elastolysis, reduces inflammation and collagen accumulation, improves pulmonary artery biomechanics, and normalizes right ventricular and pulmonary hemodynamics in a rat model of pulmonary hypertension due to left heart disease. Thus, targeting extracellular matrix remodeling may present a therapeutic approach for pulmonary hypertension due to left heart disease.


Assuntos
Cardiopatias , Hipertensão Pulmonar , Humanos , Animais , Ratos , Artéria Pulmonar , Fenômenos Biomecânicos , Elastina
13.
Histochem Cell Biol ; 160(2): 83-96, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37386200

RESUMO

Recent investigations analyzed in depth the biochemical and biophysical properties of the endothelial glycocalyx. In comparison, this complex cell-covering structure is largely understudied in alveolar epithelial cells. To better characterize the alveolar glycocalyx ultrastructure, unaffected versus injured human lung tissue explants and mouse lungs were analyzed by transmission electron microscopy. Lung tissue was treated with either heparinase (HEP), known to shed glycocalyx components, or pneumolysin (PLY), the exotoxin of Streptococcus pneumoniae not investigated for structural glycocalyx effects so far. Cationic colloidal thorium dioxide (cThO2) particles were used for glycocalyx glycosaminoglycan visualization. The level of cThO2 particles orthogonal to apical cell membranes (≙ stained glycosaminoglycan height) of alveolar epithelial type I (AEI) and type II (AEII) cells was stereologically measured. In addition, cThO2 particle density was studied by dual-axis electron tomography (≙ stained glycosaminoglycan density in three dimensions). For untreated samples, the average cThO2 particle level was ≈ 18 nm for human AEI, ≈ 17 nm for mouse AEI, ≈ 44 nm for human AEII and ≈ 35 nm for mouse AEII. Both treatments, HEP and PLY, resulted in a significant reduction of cThO2 particle levels on human and mouse AEI and AEII. Moreover, a HEP- and PLY-associated reduction in cThO2 particle density was observed. The present study provides quantitative data on the differential glycocalyx distribution on AEI and AEII based on cThO2 and demonstrates alveolar glycocalyx shedding in response to HEP or PLY resulting in a structural reduction in both glycosaminoglycan height and density. Future studies should elucidate the underlying alveolar epithelial cell type-specific distribution of glycocalyx subcomponents for better functional understanding.


Assuntos
Glicocálix , Dióxido de Tório , Camundongos , Humanos , Animais , Heparina Liase , Elétrons , Glicosaminoglicanos
14.
Hypertension ; 80(8): 1784-1794, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37313754

RESUMO

BACKGROUND: Idiopathic pulmonary hypertension (IPAH) is a rare and devastating disease often accompanied by persistent inflammation and immune responses. We aim to provide a reference atlas of neutrophils to facilitate a better understanding of cellular phenotypes and discovery of candidate genes. METHODS: Peripheral neutrophils from naive patients with IPAH and matched controls were profiled. Whole-exon sequencing was performed to exclude known genetic mutations before establishing single-cell RNA sequencing. Marker genes were validated by flow cytometry and histology in a separate validation cohort. RESULTS: Seurat clustering analysis revealed that the landscape of neutrophils encompassed 5 clusters, including 1 progenitor, 1 transition, and 3 functional clusters. The intercorrelated genes in patients with IPAH were mainly enriched in antigen processing presentation and natural killer cell mediated cytotoxicity. We identified and validated differentially upregulated genes, including MMP9 (matrix metallopeptidase 9), ISG15 (ISG15 ubiquitin-like modifier), and CXCL8 (C-X-C motif ligand 8). The positive proportions and fluorescence quantification of these genes were significantly increased in CD16+ neutrophils in patients with IPAH. The higher proportion of positive MMP9 neutrophils increased mortality risk after adjustment for age and sex. Patients with higher proportions of positive MMP9 neutrophils had worse survival, while the fraction of ISG15- or CXCL8-positive expression neutrophils failed to predict outcome. CONCLUSIONS: Our study yields a comprehensive dataset of the landscape of neutrophils in patients with IPAH. The predictive values of a neutrophil cluster characterized by higher MMP9 expression indicate a functional role for neutrophil-specific matrix metalloproteinases in the pathogenesis of pulmonary arterial hypertension.


Assuntos
Metaloproteinase 9 da Matriz , Neutrófilos , Humanos , Hipertensão Pulmonar Primária Familiar/diagnóstico , Hipertensão Pulmonar Primária Familiar/genética , Análise da Expressão Gênica de Célula Única , Mutação
17.
Am J Physiol Lung Cell Mol Physiol ; 325(3): L327-L341, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310760

RESUMO

Respiratory transfusion reactions represent some of the most severe adverse reactions related to receiving blood products. Of those, transfusion-related acute lung injury (TRALI) is associated with elevated morbidity and mortality. TRALI is characterized by severe lung injury associated with inflammation, pulmonary neutrophil infiltration, lung barrier leak, and increased interstitial and airspace edema that cause respiratory failure. Presently, there are few means of detecting TRALI beyond clinical definitions based on physical examination and vital signs or preventing/treating TRALI beyond supportive care with oxygen and positive pressure ventilation. Mechanistically, TRALI is thought to be mediated by the culmination of two successive proinflammatory hits, which typically comprise a recipient factor (1st hit-e.g., systemic inflammatory conditions) and a donor factor (2nd hit-e.g., blood products containing pathogenic antibodies or bioactive lipids). An emerging concept in TRALI research is the contribution of extracellular vesicles (EVs) in mediating the first and/or second hit in TRALI. EVs are small, subcellular, membrane-bound vesicles that circulate in donor and recipient blood. Injurious EVs may be released by immune or vascular cells during inflammation, by infectious bacteria, or in blood products during storage, and can target the lung upon systemic dissemination. This review assesses emerging concepts such as how EVs: 1) mediate TRALI, 2) represent targets for therapeutic intervention to prevent or treat TRALI, and 3) serve as biochemical biomarkers facilitating TRALI diagnosis and detection in at-risk patients.


Assuntos
Lesão Pulmonar , Reação Transfusional , Lesão Pulmonar Aguda Relacionada à Transfusão , Humanos , Lesão Pulmonar Aguda Relacionada à Transfusão/etiologia , Pulmão , Anticorpos , Inflamação
18.
Basic Res Cardiol ; 118(1): 19, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193927

RESUMO

Preclinical cardiovascular research relies heavily on non-invasive in-vivo echocardiography in mice and rats to assess cardiac function and morphology, since the complex interaction of heart, circulation, and peripheral organs are challenging to mimic ex-vivo. While n-numbers of annually used laboratory animals worldwide approach 200 million, increasing efforts are made by basic scientists aiming to reduce animal numbers in cardiovascular research according to the 3R's principle. The chicken egg is well-established as a physiological correlate and model for angiogenesis research but has barely been used to assess cardiac (patho-) physiology. Here, we tested whether the established in-ovo system of incubated chicken eggs interfaced with commercially available small animal echocardiography would be a suitable alternative test system in experimental cardiology. To this end, we defined a workflow to assess cardiac function in 8-13-day-old chicken embryos using a commercially available high resolution ultrasound system for small animals (Vevo 3100, Fujifilm Visualsonics Inc.) equipped with a high frequency probe (MX700; centre transmit: 50 MHz). We provide detailed standard operating procedures for sample preparation, image acquisition, data analysis, reference values for left and right ventricular function and dimensions, and inter-observer variabilities. Finally, we challenged incubated chicken eggs with two interventions well-known to affect cardiac physiology-metoprolol treatment and hypoxic exposure-to demonstrate the sensitivity of in-ovo echocardiography. In conclusion, in-ovo echocardiography is a feasible alternative tool for basic cardiovascular research, which can easily be implemented into the small animal research environment using existing infrastructure to replace mice and rat experiments, and thus, reduce use of laboratory animals according to the 3R principle.


Assuntos
Ecocardiografia , Coração , Embrião de Galinha , Ratos , Camundongos , Animais
19.
J Intensive Care ; 11(1): 15, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081577

RESUMO

BACKGROUND: Hemolysis is associated with increased mortality in patients with sepsis, ARDS, or therapy with extracorporeal membrane oxygenation (ECMO). To quantify a critical threshold of hemolysis in patients with ARDS and treatment with veno-venous ECMO, we aimed to identify cutoff values for cell-free hemoglobin (CFH) and haptoglobin (Hp) plasma concentrations associated with a significant increase in ICU mortality. METHODS: Patients with ARDS admitted to a tertiary ARDS referral center between 01/2007 and 12/2018 and treatment with veno-venous ECMO were included. Cutoff values for mean CFH (mCFH) and mean Hp (mHp) plasma concentrations dividing the cohort into groups with significantly different ICU mortalities were calculated and patient characteristics were compared. A multiple logistic regression model with stepwise backward variable selection was included. In addition, cutoff values for vulnerable relative timespans for the respective CFH and Hp concentrations were calculated. RESULTS: A quantitative cutoff value of 11 mg/dl for mCFH separated the cohort (n = 442) regarding ICU mortality (mCFH ≤ 11 mg/dl: 38%, [95%-CI: 32.22-43.93] (n = 277) vs. mCFH > 11 mg/dl: 70%, [61.99-76.47] (n = 165), p < 0.001). Analogously, a mHp cutoff value ≤ 0.39 g/l was associated with a significant increase in ICU mortality (mHp ≤ 0.39 g/l: 68.7%, [60.91-75.61] (n = 163) vs. mHp > 0.39 g/l: 38.7%, [33.01-44.72] (n = 279), p < 0.001). The independent association of ICU mortality with CFH and Hp cutoff values was confirmed by logistic regression adjusting for confounders (CFH Grouping: OR 3.77, [2.51-5.72], p < 0.001; Hp Grouping: OR 0.29, [0.19-0.43], p < 0.001). A significant increase in ICU mortality was observed when CFH plasma concentration exceeded the limit of 11 mg/dl on 13.3% of therapy days (≤ 13.3% of days with CFH > 11 mg/dl: 33%; [26.81-40.54] (n = 192) vs. > 13.3% of days with CFH > 11 mg/dl: 62%; [56.05-68.36] (n = 250), p < 0.001). Analogously, a mortality increase was detected when Hp plasma concentration remained ≤ 0.39 g/l for > 18.2% of therapy days (≤ 18.2% days with Hp ≤ 0.39 g/l: 27%; [19.80-35.14] (n = 138) vs. > 18.2% days with Hp ≤ 0.39 g/l: 60%; [54.43-65.70] (n = 304), p < 0.001). CONCLUSIONS: Moderate hemolysis with mCFH-levels as low as 11 mg/dl impacts mortality in patients with ARDS and therapy with veno-venous ECMO. Furthermore, a cumulative dose effect should be considered indicated by the relative therapy days with CFH-concentrations > 11 mg/dl. In addition, also Hp plasma concentrations need consideration when the injurious effect of elevated CFH is evaluated.

20.
Front Med (Lausanne) ; 10: 1098547, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923010

RESUMO

An impressive effect of the infection with SARS-Co-19 is the impairment of oxygen uptake due to lung injury. The reduced oxygen diffusion may potentially be counteracted by an increase in oxygen affinity of hemoglobin. However, hypoxia and anemia associated with COVID-19 usually decrease oxygen affinity due to a rise in [2,3-bisphosphoglycerate]. As such, COVID-19 related changes in the oxygen dissociation curve may be critical for oxygen uptake and supply, but are hard to predict. A Pubmed search lists 14 publications on oxygen affinity in COVID-19. While some investigations show no changes, three large studies found an increased affinity that was related to a good prognosis. Exact causes remain unknown. The cause of the associated anemia in COVID-19 is under discussion. Erythrocytes with structural alterations of membrane and cytoskeleton have been observed, and virus binding to Band 3 and also to ACE2 receptors in erythroblasts has been proposed. COVID-19 presentation is moderate in many subjects suffering from sickle cell disease. A possible explanation is that COVID-19 counteracts the unfavorable large right shift of the oxygen dissociation curve in these patients. Under discussion for therapy are mainly affinity-increasing drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...